On nonparametric maximum likelihood estimation with double truncation
成果类型:
Article
署名作者:
Xiao, J.; Hudgens, M. G.
署名单位:
University of North Carolina; University of North Carolina Chapel Hill
刊物名称:
BIOMETRIKA
ISSN/ISSBN:
0006-3444
DOI:
10.1093/biomet/asz038
发表日期:
2019
页码:
989996
关键词:
empirical distributions
摘要:
Doubly truncated survival data arise if failure times are observed only within certain time intervals. The nonparametric maximum likelihood estimator is widely used to estimate the underlying failure time distribution. Using a directed graph representation of the data suggested by Vardi (1985), a certain graphical condition holds if and only if the nonparametric maximum likelihood estimate exists and is unique. If this condition does not hold, then such an estimate may exist but need not be unique, so another graphical condition is proposed to check whether such an estimate exists. The conditions are simple to check using existing graphical software. Reanalysis of an AIDS incubation time dataset shows that a nonparametric maximum likelihood estimate does not exist for these data.
来源URL: