On order determination by predictor augmentation

成果类型:
Article
署名作者:
Luo, Wei; Li, Bing
署名单位:
Zhejiang University; Pennsylvania Commonwealth System of Higher Education (PCSHE); Pennsylvania State University; Pennsylvania State University - University Park
刊物名称:
BIOMETRIKA
ISSN/ISSBN:
0006-3444
DOI:
10.1093/biomet/asaa077
发表日期:
2021
页码:
557574
关键词:
sliced inverse regression Dimension Reduction variable selection Consistency sparsity
摘要:
In many dimension reduction problems in statistics and machine learning, such as in principal component analysis, canonical correlation analysis, independent component analysis and sufficient dimension reduction, it is important to determine the dimension of the reduced predictor, which often amounts to estimating the rank of a matrix. This problem is called order determination. In this article, we propose a novel and highly effective order-determination method based on the idea of predictor augmentation. We show that if the predictor is augmented by an artificially generated random vector, then the parts of the eigenvectors of the matrix induced by the augmentation display a pattern that reveals information about the order to be determined. This information, when combined with the information provided by the eigenvalues of the matrix, greatly enhances the accuracy of order determination.
来源URL: