The equivalence of constrained and weighted designs in multiple objective design problems

成果类型:
Article
署名作者:
Clyde, M; Chaloner, K
署名单位:
University of Minnesota System; University of Minnesota Twin Cities
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.2307/2291742
发表日期:
1996
页码:
1236-1244
关键词:
polynomial regression bayesian design models INFORMATION utility robust
摘要:
Several competing objectives may be relevant in the design of an experiment. The competing objectives may not be easy to characterize in a single optimality criterion. One approach to these design problems has been to weight each criterion and find the design that optimizes the weighted average of the criteria. An alternative approach has been to optimize one criterion subject to constraints on the other criteria. An equivalence theorem is presented for the Bayesian constrained design problem. Equivalence theorems are essential in verifying optimality of proposed designs, especially when (as in most nonlinear design problems) numerical optimization is required. This theorem is used to show that the results of Cook and Wong on the equivalence of the weighted and constrained problems apply much more generally. The results are applied to Bayesian nonlinear design problems with several objectives.