An analysis of transformations for additive nonparametric regression
成果类型:
Article
署名作者:
Linton, OB; Chen, R; Wang, NS; Hardle, W
署名单位:
Yale University; Texas A&M University System; Texas A&M University College Station; Humboldt University of Berlin
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.2307/2965422
发表日期:
1997
页码:
1512-1521
关键词:
kernel estimation
models
identification
摘要:
We consider a nonparametric regression model with a parametric family of dependent variable transformations, one of which induces additive covariate effects. We estimate the additive regression effects using the integration method and estimate the transformation parameter from a profiled instrumental variable and pseudolikelihood criterion. The asymptotic distributions of the parameter and regression estimates are given. The practical performance is investigated via an application.