Generalized nonlinear modeling with multivariate free-knot regression splines
成果类型:
Article
署名作者:
Holmes, CC; Mallick, BK
署名单位:
Imperial College London; Texas A&M University System; Texas A&M University College Station
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1198/016214503000143
发表日期:
2003
页码:
352-368
关键词:
bayesian regression
inference
binary
摘要:
A Bayesian method is presented for the nonparametric modeling of univariate and multivariate non-Gaussian response data. Data-adaptive multivariate regression splines are used where the number and location of the knot points are treated as random. The posterior model space is explored using a reversible-jump Markov chain Monte Carlo sampler. Computational difficulties are partly alleviated by introducing a random residual effect in the model that leaves many of the posterior conditional distributions of the model parameters in standard form. The use of the latent residual effect provides a convenient vehicle for modeling correlation in multivariate response data, and as such our method can be seen to generalize the seemingly unrelated regression model to non-Gaussian data. We illustrate the method on a number of examples, including two previously unpublished datasets relating to the spatial smoothing of multivariate accident data in Texas and the modeling of credit card use across multiple retail sectors.
来源URL: