SLEX analysis of multivariate nonstationary time series

成果类型:
Article
署名作者:
Ombao, H; von Sachs, R; Guo, WS
署名单位:
University of Illinois System; University of Illinois Urbana-Champaign; University of Illinois System; University of Illinois Urbana-Champaign
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1198/016214504000001448
发表日期:
2005
页码:
519-531
关键词:
statistical-analysis MODEL
摘要:
We develop a procedure for analyzing multivariate nonstationary time series using the SLEX library (smooth localized complex exponentials), which is a collection of bases, each basis consisting of waveforms that are orthogonal and time-localized versions of the Fourier complex exponentials. Under the SLEX framework, we build a family of multivariate models that can explicitly characterize the time-varying spectral and coherence properties. Every model has a spectral representation in terms of a unique SLEX basis. Before selecting a model, we first decompose the multivariate time series into nonstationary components with uncorrelated (nonredundant) spectral information. The best SLEX model is selected using the penalized log energy criterion, which we derive in this article to be the Kullback-Leibler distance between a model and the SLEX principal components of the multivariate time series. The model selection criterion takes into account all of the pairwise cross-correlation simultaneously in the multivariate time series. The proposed SLEX analysis gives results that are easy to interpret, because it is an automatic time-dependent generalization of the classical Fourier analysis of stationary time series. Moreover, the SLEX method uses computationally efficient algorithms and hence is able to provide a systematic framework for extracting spectral features from a massive dataset. We illustrate the SLEX analysis with an application to a multichannel brain wave dataset recorded during an epileptic seizure.