Quantiles for counts
成果类型:
Article
署名作者:
Machado, JAF; Silva, JMCS
署名单位:
Universidade Nova de Lisboa; Universidade de Lisboa; Universidade de Lisboa
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1198/016214505000000330
发表日期:
2005
页码:
1226-1237
关键词:
median regression
least-squares
models
摘要:
This article studies the estimation of conditional quantiles of counts. Given the discreteness of the data, some smoothness must be artificially imposed on the problem. We show that it is possible to smooth the data in a way that allows inference to be performed using standard quantile regression techniques. The performance and implementation of the estimators are illustrated by simulations and an application.