Variable selection for model-based clustering
成果类型:
Article
署名作者:
Raftery, AE; Dean, N
署名单位:
University of Washington; University of Washington Seattle
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1198/016214506000000113
发表日期:
2006
页码:
168-178
关键词:
摘要:
We consider the problem of variable or feature selection for model-based clustering. The problem of comparing two nested subsets of variables is recast as a model comparison problem and addressed using approximate Bayes factors. A greedy search algorithm is proposed for finding a local optimum in model space. The resulting method selects variables (or features), the number of clusters, and the clustering model simultaneously. We applied the method to several simulated and real examples and found that removing irrelevant variables often improved performance. Compared with methods based on all of the variables, our variable selection method consistently yielded more accurate estimates of the number of groups and lower classification error rates, as well as more parsimonious clustering models and easier visualization of results.
来源URL: