Inference for stereological extremes
成果类型:
Article
署名作者:
Bortot, P.; Coles, S. G.; Sisson, S. A.
署名单位:
University of Bologna; University of Padua; University of New South Wales Sydney
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1198/016214506000000988
发表日期:
2007
页码:
84-92
关键词:
approximate bayesian computation
fatigue-strength prediction
chain monte-carlo
maximum size
quality-control
statistics
inclusion
摘要:
In the production of clean steels, the occurrence of imperfections-so-called inclusions-is unavoidable. The strength of a clean steel block is largely dependent on the size of the largest imperfection that it contains, so inference on extreme inclusion size forms an important part of quality control. Sampling is generally done by measuring imperfections on planar slices, leading to an extreme value version of a standard stereological problem: how to make inference on large inclusions using only the sliced observations. Under the assumption that inclusions are spherical, this problem has been tackled previously using a combination of extreme value models, stereological calculations, a Bayesian hierarchical model, and standard Markov chain Monte Carlo (MCMC) techniques. Our objectives in this article are twofold: (1) to assess the robustness of such inferences with respect to the assumption of spherical inclusions, and (2) to develop an inference procedure that is valid for nonspherical inclusions. We investigate both of these aspects by extending the spherical family for inclusion shapes to a family of ellipsoids. We then address the issue of robustness by assessing the performance of the spherical model when fitted to measurements obtained from a simulation of ellipsoidal inclusions. The issue of inference is more difficult, because likelihood calculation is not feasible for the ellipsoidal model. To handle this aspect, we propose a modification to a recently developed likelihood-free MCMC algorithm. After verifying the viability and accuracy of the proposed algorithm through a simulation study, we analyze a real inclusion dataset, comparing the inference obtained under the ellipsoidal inclusion model with that previously obtained assuming spherical inclusions.