Improved Inference for Respondent-Driven Sampling Data With Application to HIV Prevalence Estimation

成果类型:
Article
署名作者:
Gile, Krista J.
署名单位:
University of Massachusetts System; University of Massachusetts Amherst
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1198/jasa.2011.ap09475
发表日期:
2011
页码:
135-146
关键词:
maximum-likelihood-estimation behavioral surveillance drug-users replacement
摘要:
Respondent-driven sampling is a form of link-tracing network sampling, which is widely used to study hard-to-reach populations, often to estimate population proportions. Previous treatments of this process have used a with-replacement approximation, which we show induces bias in estimates for large sample fractions and differential network connectedness by characteristic of interest. We present a treatment of respondent-driven sampling as a successive sampling process. Unlike existing representations, our approach respects the essential without-replacement feature of the process, while converging to an existing with-replacement representation for small sample fractions, and to the sample mean for a full-population sample. We present a successive-sampling based estimator for population means based on respondent-driven sampling data, and demonstrate its super,or performance when the size of the hidden population is known. We present sensitivity analyses for unknown population sizes. In addition, we note that like other existing estimators, our new estimator is subject to bias induced by the selection of the initial sample. Using data collected among three populations in two countries, we illustrate the application of this approach to populations with varying characteristics. We conclude that the successive sampling estimator improves on existing estimators, and can also be used as a diagnostic tool when population size is not known. This article has supplementary material online.