Nonparametric Independence Screening in Sparse Ultra-High-Dimensional Additive Models
成果类型:
Article
署名作者:
Fan, Jianqing; Feng, Yang; Song, Rui
署名单位:
Princeton University; Columbia University; Colorado State University System; Colorado State University Fort Collins
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1198/jasa.2011.tm09779
发表日期:
2011
页码:
544-557
关键词:
nonconcave penalized likelihood
variable selection
regression
摘要:
A variable screening procedure via correlation learning was proposed by Fan and Lv (2008) to reduce dimensionality in sparse ultra-high-dimensional models. Even when the true model is linear, the marginal regression can be highly nonlinear. To address this issue, we further extend the correlation learning to marginal nonparametric learning. Our nonparametric independence screening (NIS) is a specific type of sure independence screening. We propose several closely related variable screening procedures. We show that with general nonparametric models, under some mild technical conditions, the proposed independence screening methods have a sure screening property. The extent to which the dimensionality can be reduced by independence screening is also explicitly quantified. As a methodological extension, we also propose a data-driven thresholding and an iterative nonparametric independence screening (INIS) method to enhance the finite- sample performance for fitting sparse additive models. The simulation results and a real data analysis demonstrate that the proposed procedure works well with moderate sample size and large dimension and performs better than competing methods.