Identifying the Effects of SNAP (Food Stamps) on Child Health Outcomes When Participation Is Endogenous and Misreported

成果类型:
Article
署名作者:
Kreider, Brent; Pepper, John V.; Gundersen, Craig; Jolliffe, Dean
署名单位:
Iowa State University; University of Virginia; University of Illinois System; University of Illinois Urbana-Champaign; The World Bank
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2012.682828
发表日期:
2012
页码:
958-975
关键词:
monotone instrumental variables nonparametric bounds analysis partial identification measurement error program poverty income insecurity disability overweight
摘要:
The literature assessing the efficacy of the Supplemental Nutrition Assistance Program (SNAP), formerly known as the Food Stamp Program, has long puzzled over positive associations between SNAP receipt and various undesirable health outcomes such as food insecurity. Assessing the causal impacts of SNAP, however, is hampered by two key identification problems: endogenous selection into participation and extensive systematic underreporting of participation status. Using data from the National Health and Nutrition Examination Survey (NHANES), we extend partial identification bounding methods to account for these two identification problems in a single unifying framework. Specifically, we derive informative bounds on the average treatment effect (ATE) of SNAP on child food insecurity, poor general health, obesity, and anemia across a range of different assumptions used to address the selection and classification error problems. In particular, to address the selection problem, we apply relatively weak nonparametric assumptions on the latent outcomes, selected treatments, and observed covariates. To address the classification error problem, we formalize a new approach that uses auxiliary administrative data on the size of the SNAP caseload to restrict the magnitudes and patterns of SNAP reporting errors. Layering successively stronger assumptions, an objective of our analysis is to make transparent how the strength of the conclusions varies with the strength of the identifying assumptions. Under the weakest restrictions, there is substantial ambiguity; we cannot rule out the possibility that SNAP increases or decreases poor health. Under stronger but plausible assumptions used to address the selection and classification error problems, we find that commonly cited relationships between SNAP and poor health outcomes provide a misleading picture about the true impacts of the program. Our tightest bounds identify favorable impacts of SNAP on child health.