Optimal Designs for Rational Function Regression
成果类型:
Article
署名作者:
Papp, David
署名单位:
Northwestern University
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2012.656035
发表日期:
2012
页码:
400-411
关键词:
polynomial regression
摘要:
We consider consider the problem of finding optimal nonsequential designs for a large class of regression models involving polynomials and rational functions with heteroscedastic noise also given by a polynomial or rational weight function. Since the design weights can be found easily by existing methods once the support is known, we concentrate on determining the support of the optimal design. The proposed method treats D-, E-, A-, and Phi(p)-optimal designs in a unified manner, and generates a polynomial whose zeros are the support points of the optimal approximate design, generalizing a number of previously known results of the same flavor. The method is based on a mathematical optimization model that can incorporate various criteria of optimality and can be solved efficiently by well-established numerical optimization methods. In contrast to optimization-based methods previously proposed for the solution of similar design problems, our method also has theoretical guarantee of its algorithmic efficiency; in concordance with the theory, the actual running times of all numerical examples considered in the paper are negligible. The numerical stability of the method is demonstrated in an example involving high-degree polynomials. As a corollary, an upper bound on the size of the support set of the minimally supported optimal designs is also found.
来源URL: