Bayesian Gaussian Copula Factor Models for Mixed Data
成果类型:
Article
署名作者:
Murray, Jared S.; Dunson, David B.; Carin, Lawrence; Lucas, Joseph E.
署名单位:
Duke University; Duke University; Duke University
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2012.762328
发表日期:
2013
页码:
656-665
关键词:
latent variable models
dependence
inference
摘要:
Gaussian factor models have proven widely useful for parsimoniously characterizing dependence in multivariate data. There is rich literature on their extension to mixed categorical and continuous variables, using latent Gaussian variables or through generalized latent trait models accommodating measurements in the exponential family. However, when generalizing to non-Gaussian measured variables, the latent variables typically influence both the dependence structure and the form of the marginal distributions, complicating interpretation and introducing artifacts. To address this problem, we propose a novel class of Bayesian Gaussian copula factor models that decouple the latent factors from the marginal distributions. A semiparametric specification for the marginals based on the extended rank likelihood yields straightforward implementation and substantial computational gains. We provide new theoretical and empirical justifications for using this likelihood in Bayesian inference. We propose new default priors for the factor loadings and develop efficient parameter-expanded Gibbs sampling for posterior computation. The methods are evaluated through simulations and applied to a dataset in political science. The models in this article are implemented in the R package bfa (available from http://stat.duke.edu/jsm38/software/bfa). Supplementary materials for this article are available online.