Estimation of Extreme Conditional Quantiles Through Power Transformation
成果类型:
Article
署名作者:
Wang, Huixia Judy; Li, Deyuan
署名单位:
North Carolina State University; Fudan University
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2013.820134
发表日期:
2013
页码:
1062-1074
关键词:
nonparametric-estimation
Empirical Likelihood
Tail Index
regression
摘要:
The estimation of extreme conditional quantiles is an important issue in numerous disciplines. Quantile regression (QR) provides a natural way to capture the covariate effects at different tails of the response distribution. However, without any distributional assumptions, estimation from conventional QR is often unstable at the tails, especially for heavy-tailed distributions due to data sparsity. In this article, we develop a new three-stage estimation procedure that integrates QR and extreme value theory by estimating intermediate conditional quantiles using QR and extrapolating these estimates to tails based on extreme value theory. Using the power-transformed QR, the proposed method allows more flexibility than existing methods that rely on the linearity of quantiles on the original scale, while extending the applicability of parametric models to borrow information across covariates without resorting to nonparametric smoothing. In addition, we propose a test procedure to assess the commonality of extreme value index, which could be useful for obtaining more efficient estimation by sharing information across covariates. We establish the asymptotic properties of the proposed method and demonstrate its value through simulation study and the analysis of a medical cost data. Supplementary materials for this article are available online.