Simultaneous Grouping Pursuit and Feature Selection Over an Undirected Graph

成果类型:
Article
署名作者:
Zhu, Yunzhang; Shen, Xiaotong; Pan, Wei
署名单位:
University of Minnesota System; University of Minnesota Twin Cities; University of Minnesota System; University of Minnesota Twin Cities
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2013.770704
发表日期:
2013
页码:
713-725
关键词:
VARIABLE SELECTION gene-expression regression regularization
摘要:
In high-dimensional regression, grouping pursuit and feature selection have their own merits while complementing each other in battling the curse of dimensionality. To seek a parsimonious model, we perform simultaneous grouping pursuit and feature selection over an arbitrary undirected graph with each node corresponding to one predictor. When the corresponding nodes are reachable from each other over the graph, regression coefficients can be grouped, whose absolute values are the same or close. This is motivated from gene network analysis, where genes tend to work in groups according to their biological functionalities. Through a nonconvex penalty, we develop a computational strategy and analyze the proposed method. Theoretical analysis indicates that the proposed method reconstructs the oracle estimator, that is, the unbiased least-square estimator given the true grouping, leading to consistent reconstruction of grouping structures and informative features, as well as to optimal parameter estimation. Simulation studies suggest that the method combines the benefit of grouping pursuit with that of feature selection, and compares favorably against its competitors in selection accuracy and predictive performance. An application to eQTL data is used to illustrate the methodology, where a network is incorporated into analysis through an undirected graph.