Nonparametric Mixture of Regression Models
成果类型:
Article
署名作者:
Huang, Mian; Li, Runze; Wang, Shaoli
署名单位:
Shanghai University of Finance & Economics; Pennsylvania Commonwealth System of Higher Education (PCSHE); Pennsylvania State University; Pennsylvania State University - University Park; Pennsylvania Commonwealth System of Higher Education (PCSHE); Pennsylvania State University; Pennsylvania State University - University Park
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2013.772897
发表日期:
2013
页码:
929-941
关键词:
kernel regression
likelihood
摘要:
Motivated by an analysis of U.S. house price index (HPI) data, we propose nonparametric finite mixture of regression models. We study the identifiability issue of the proposed models, and develop an estimation procedure by employing kernel regression. We further systematically study the sampling properties of the proposed estimators, and establish their asymptotic normality. A modified EM algorithm is proposed to carry out the estimation procedure. We show that our algorithm preserves the ascent property of the EM algorithm in an asymptotic sense. Monte Carlo simulations are conducted to examine the finite sample performance of the proposed estimation procedure. An empirical analysis of the U.S. HPI data is illustrated for the proposed methodology.