Semiparametric Bayesian Estimation for Marginal Parametric Potential Outcome Modeling: Application to Causal Inference
成果类型:
Article
署名作者:
Hoshino, Takahiro
署名单位:
Nagoya University
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2013.835656
发表日期:
2013
页码:
1189-1204
关键词:
word-of-mouth
propensity score
missing-data
ability
wages
摘要:
We propose a new semiparametric Bayesian model for causal inference in which assignment to treatment depends on potential outcomes. The model uses the probit stick-breaking process mixture proposed by Chung and Dunson (2009), a variant of the Dirichlet process mixture modeling. In contrast to previous Bayesian models, the proposed model directly estimates the parameters of the marginal parametric model of potential outcomes, while it relaxes the strong ignorability assumption, and requires no parametric model assumption for the assignment model and conditional distribution of the covariate vector. The proposed estimation method is more robust than maximum likelihood estimation, in that it does not require knowledge of the full joint distribution of potential outcomes, covariates, and assignments. In addition, the method is more efficient than fully nonparametric Bayes methods. We apply this model to infer the differential effects of cognitive and noncognitive skills on the wages of production and nonproduction workers using panel data from the National Longitudinal Survey of Youth in 1979. The study also presents the causal effect of online word-of-mouth on Web site browsing behavior. Supplementary materials for this article are available online.