Inferential Models: A Framework for Prior-Free Posterior Probabilistic Inference
成果类型:
Article
署名作者:
Martin, Ryan; Liu, Chuanhai
署名单位:
University of Illinois System; University of Illinois Chicago; University of Illinois Chicago Hospital; Purdue University System; Purdue University
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2012.747960
发表日期:
2013
页码:
301-313
关键词:
DISTRIBUTIONS
BAYES
摘要:
Posterior probabilistic statistical inference without priors is an important but so far elusive goal. Fisher's fiducial inference, Dempster-Shafer theory of belief functions, and Bayesian inference with default priors are attempts to achieve this goal but, to date, none has given a completely satisfactory picture. This article presents a new framework for probabilistic inference, based on inferential models (IMs), which not only provides data-dependent probabilistic measures of uncertainty about the unknown parameter, but also does so with an automatic long-run frequency-calibration property. The key to this new approach is the identification of an unobservable auxiliary variable associated with observable data and unknown parameter, and the prediction of this auxiliary variable with a random set before conditioning on data. Here we present a three-step IM construction, and prove a frequency-calibration property of the IM's belief function under mild conditions. A corresponding optimality theory is developed, which helps to resolve the nonuniqueness issue. Several examples are presented to illustrate this new approach.