Case Definition and Design Sensitivity
成果类型:
Article
署名作者:
Small, Dylan S.; Cheng, Jing; Halloran, M. Elizabeth; Rosenbaum, Paul R.
署名单位:
University of Pennsylvania; University of California System; University of California San Francisco; Fred Hutchinson Cancer Center; University of Washington; University of Washington Seattle
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2013.820660
发表日期:
2013
页码:
1457-1468
关键词:
instrumental variables
confounders
BIAS
摘要:
In a case-referent study, cases of disease are compared to noncases with respect to their antecedent exposure to a treatment in an effort to determine whether exposure causes some cases of the disease. Because exposure is not randomly assigned in the population, as it would be if the population were a vast randomized trial, exposed and unexposed subjects may differ prior to exposure with respect to covariates that may or may not have been measured. After controlling for measured preexposure differences, for instance by matching, a sensitivity analysis asks about the magnitude of bias from unmeasured covariates that would need to be present to alter the conclusions of a study that presumed matching for observed covariates removes all bias. The definition of a case of disease affects sensitivity to unmeasured bias. We explore this issue using: (i) an asymptotic tool, the design sensitivity, (ii) a simulation for finite samples, and (iii) an example. Under favorable circumstances, a narrower case definition can yield an increase in the design sensitivity, and hence an increase in the power of a sensitivity analysis. Also, we discuss an adaptive method that seeks to discover the best case definition from the data at hand while controlling for multiple testing. An implementation in R is available as SensitivityCaseControl.