Robust Variable Selection With Exponential Squared Loss

成果类型:
Article
署名作者:
Wang, Xueqin; Jiang, Yunlu; Huang, Mian; Zhang, Heping
署名单位:
Sun Yat Sen University; Sun Yat Sen University; Sun Yat Sen University; Shanghai University of Finance & Economics; Yale University
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2013.766613
发表日期:
2013
页码:
632-643
关键词:
nonconcave penalized likelihood high breakdown-point REGRESSION SHRINKAGE quantile regression oracle properties statistical view model selection Lasso minimization algorithms
摘要:
Robust variable selection procedures through penalized regression have been gaining increased attention in the literature. They can be used to perform variable selection and are expected to yield robust estimates. However, to the best of our knowledge, the robustness of those penalized regression procedures has not been well characterized. In this article, we propose a class of penalized robust regression estimators based on exponential squared loss. The motivation for this new procedure is that it enables us to characterize its robustness in a way that has not been done for the existing procedures, while its performance is near optimal and superior to some recently developed methods. Specifically, under defined regularity conditions, our estimators are root n-consistent and possess the oracle property. Importantly, we show that our estimators can achieve the highest asymptotic breakdown point of 1/2 and that their influence functions are bounded with respect to the outliers in either the response or the covariate domain. We performed simulation studies to compare our proposed method with some recent methods, using the oracle method as the benchmark. We consider common sources of influential points. Our simulation studies reveal that our proposed method performs similarly to the oracle method in terms of the model error and the positive selection rate even in the presence of influential points. In contrast, other existing procedures have a much lower noncausal selection rate. Furthermore, we reanalyze the Boston Housing Price Dataset and the Plasma Beta-Carotene Level Dataset that are commonly used examples for regression diagnostics of influential points. Our analysis unravels the discrepancies of using our robust method versus the other penalized regression method, underscoring the importance of developing and applying robust penalized regression methods.
来源URL: