Feature Selection for Varying Coefficient Models With Ultrahigh-Dimensional Covariates

成果类型:
Article
署名作者:
Liu, Jingyuan; Li, Runze; Wu, Rongling
署名单位:
Xiamen University; Pennsylvania Commonwealth System of Higher Education (PCSHE); Pennsylvania State University; Pennsylvania State University - University Park; Pennsylvania Commonwealth System of Higher Education (PCSHE); Pennsylvania State University; Pennsylvania State University - University Park; Pennsylvania Commonwealth System of Higher Education (PCSHE); Pennsylvania State University; Penn State Health
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2013.850086
发表日期:
2014
页码:
266-274
关键词:
VARIABLE SELECTION likelihood shrinkage
摘要:
This article is concerned with feature screening and variable selection for varying coefficient models with ultrahigh-dimensional covariates. We propose a new feature screening procedure for these models based on conditional correlation coefficient. We systematically study the theoretical properties of the proposed procedure, and establish their sure screening property and the ranking consistency. To enhance the finite sample performance of the proposed procedure, we further develop an iterative feature screening procedure. Monte Carlo simulation studies were conducted to examine the performance of the proposed procedures. In practice, we advocate a two-stage approach for varying coefficient models. The two-stage approach consists of (a) reducing the ultrahigh dimensionality by using the proposed procedure and (b) applying regularization methods for dimension-reduced varying coefficient models to make statistical inferences on the coefficient functions. We illustrate the proposed two-stage approach by a real data example. Supplementary materials for this article are available online.