Spatially Varying Coefficient Model for Neuroimaging Data With Jump Discontinuities

成果类型:
Article
署名作者:
Zhu, Hongtu; Fan, Jianqing; Kong, Linglong
署名单位:
University of North Carolina; University of North Carolina Chapel Hill; Princeton University; Chinese Academy of Sciences; Academy of Mathematics & System Sciences, CAS; University of Alberta
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2014.881742
发表日期:
2014
页码:
1084-1098
关键词:
regression fmri
摘要:
Motivated by recent work on studying massive imaging data in various neuroimaging studies, we propose a novel spatially varying coefficient model (SVCM) to capture the varying association between imaging measures in a three-dimensional volume (or two-dimensional surface) with a set of covariates. Two stylized features of neuorimaging data are the presence of multiple piecewise smooth regions with unknown edges and jumps and substantial spatial correlations. To specifically account for these two features, SVCM includes a measurement model with multiple varying coefficient functions, a jumping surface model for each varying coefficient function, and a functional principal component model. We develop a three-stage estimation procedure to simultaneously estimate the varying coefficient functions and the spatial correlations. The estimation procedure includes a fast multiscale adaptive estimation and testing procedure to independently estimate each varying coefficient function, while preserving its edges among different piecewise-smooth regions. We systematically investigate the asymptotic properties (e.g., consistency and asymptotic normality) of the multiscale adaptive parameter estimates. We also establish the uniform convergence rate of the estimated spatial covariance function and its associated eigenvalues and eigenfunctions. Our Monte Carlo simulation and real-data analysis have confirmed the excellent performance of SVCM. Supplementary materials for this article are available online.