Probit Transformation for Kernel Density Estimation on the Unit Interval

成果类型:
Article
署名作者:
Geenens, Gery
署名单位:
University of New South Wales Sydney
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2013.842173
发表日期:
2014
页码:
346-358
关键词:
boundary correction bandwidth BIAS
摘要:
Kernel estimation of a probability density function supported on the unit interval has proved difficult, because of the well-known boundary bias issues a conventional kernel density estimator would necessarily face in this situation. Transforming the variable of interest into a variable whose density has unconstrained support, estimating that density, and obtaining an estimate of the density of the original variable through back-transformation, seems a natural idea to easily get rid of the boundary problems. In practice, however, a simple and efficient implementation of this methodology is far from immediate, and the few attempts found in the literature have been reported not to perform well. In this article, the main reasons for this failure are identified and an easy way to correct them is suggested. It turns out that combining the transformation idea with local likelihood density estimation produces viable density estimators, mostly free from boundary issues. Their asymptotic properties are derived, and a practical cross-validation bandwidth selection rule is devised. Extensive simulations demonstrate the excellent performance of these estimators compared to their main competitors for a wide range of density shapes. In fact, they turn out to be the best choice overall. Finally, they are used to successfully estimate a density of nonstandard shape supported on [0, 1] from a small-size real data sample.
来源URL: