Filtering With Heavy Tails

成果类型:
Article
署名作者:
Harvey, Andrew; Luati, Alessandra
署名单位:
University of Cambridge; University of Bologna
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2014.887011
发表日期:
2014
页码:
1112-1122
关键词:
models
摘要:
An unobserved components model in which the signal is buried in noise that is non-Gaussian may throw up observations that, when judged by the Gaussian yardstick, are outliers. We describe an observation-driven model, based on a conditional Student's t-distribution, which is tractable and retains some of the desirable features of the linear Gaussian model. Letting the dynamics be driven by the score of the conditional distribution leads to a specification that is not only easy to implement, but which also facilitates the development of a comprehensive and relatively straightforward theory for the asymptotic distribution of the maximum likelihood estimator. The methods are illustrated with an application to rail travel in the United Kingdom. The final part of the article shows how the model may be extended to include explanatory variables.
来源URL: