Estimation of Multiple-Regime Threshold Autoregressive Models With Structural Breaks

成果类型:
Article
署名作者:
Yau, Chun Yip; Tang, Chong Man; Lee, Thomas C. M.
署名单位:
Chinese University of Hong Kong; University of California System; University of California Davis
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2014.954706
发表日期:
2015
页码:
1175-1186
关键词:
time-series models Minimum Description Length selection Consistency PRINCIPLE
摘要:
The threshold autoregressive (TAR) model is a class of nonlinear time series models that have been widely used in many areas. Due to its nonlinear nature, one major difficulty in fitting a TAR model is the estimation of the thresholds. As a first contribution, this article develops an automatic procedure to estimate the number and values of the thresholds, as well as the corresponding AR order and parameter values in each regime. These parameter estimates are defined as the minimizers of an objective function derived from the minimum description length (MDL) principle. A genetic algorithm (GA) is constructed to efficiently solve the associated minimization problem. The second contribution of this article is the extension of this framework to piecewise TAR modeling; that is, the time series is partitioned into different segments for which each segment can be adequately modeled by a TAR model, while models from adjacent segments are different. For such piecewise TAR modeling, a procedure is developed to estimate the number and locations of the breakpoints, together with all other parameters in each segment. Desirable theoretical results are derived to lend support to the proposed methodology. Simulation experiments and an application to an U.S. GNP data are used to illustrate the empirical performances of the methodology. Supplementary materials for this article are available online.