Risk Classification With an Adaptive Naive Bayes Kernel Machine Model

成果类型:
Article
署名作者:
Minnier, Jessica; Yuan, Ming; Liu, Jun S.; Cai, Tianxi
署名单位:
Oregon Health & Science University; University of Wisconsin System; University of Wisconsin Madison; Harvard University; Harvard University; Harvard T.H. Chan School of Public Health
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2014.908778
发表日期:
2015
页码:
393-404
关键词:
genome-wide association breast-cancer risk gene-environment interaction complex diseases common diseases mixed models prediction regression susceptibility INDEPENDENCE
摘要:
Genetic studies of complex traits have uncovered only a small number of risk markers explaining a small fraction of heritability and adding little improvement to disease risk prediction. Standard single marker methods may lack power in selecting informative markers or estimating effects. Most existing methods also typically do not account for nonlinearity. Identifying markers with weak signals and estimating their joint effects among many noninformative markers remains challenging. One potential approach is to group markers based on biological knowledge such as gene structure. If markers in a group tend to have similar effects, proper usage of the group structure could improve power and efficiency in estimation. We propose a two-stage method relating markers to disease risk by taking advantage of known gene-set structures. Imposing a naive Bayes kernel machine (KM) model, we estimate gene-set specific risk models that relate each gene-set to the outcome in stage I. The KM framework efficiently models potentially nonlinear effects of predictors without requiring explicit specification of functional forms. In stage II, we aggregate information across gene-sets via a regularization procedure. Estimation and computational efficiency is further improved with kernel principal component analysis. Asymptotic results for model estimation and gene-set selection are derived and numerical studies suggest that the proposed procedure could outperform existing procedures for constructing genetic risk models.