Bias-Reduced Doubly Robust Estimation
成果类型:
Article
署名作者:
Vermeulen, Karel; Vansteelandt, Stijn
署名单位:
Ghent University; Ghent University
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2014.958155
发表日期:
2015
页码:
1024-1036
关键词:
demystifying double robustness
Causal Inference
alternative strategies
covariate adjustment
Missing Data
nonresponse
models
regression
EFFICIENCY
exposure
摘要:
Over the past decade, doubly robust estimators have been proposed for a variety of target parameters in causal inference and missing data models. These are asymptotically unbiased when at least one of two nuisance working models is correctly specified, regardless of which. While their asymptotic distribution is not affected by the choice of root-n consistent estimators of the nuisance parameters indexing these working models when all working models are correctly specified, this choice of estimators can have a dramatic impact under misspecification of at least one working model. In this article, we will therefore propose a simple and generic estimation principle for the nuisance parameters indexing each of the working models, which is designed to improve the performance of the doubly robust estimator of interest, relative to the default use of maximum likelihood estimators for the nuisance parameters. The proposed approach locally minimizes the squared first-order asymptotic bias of the doubly robust estimator under misspecification of both working models and results in doubly robust estimators with easy-to-calculate asymptotic variance. It moreover improves the stability of the weights in those doubly robust estimators which invoke inverse probability weighting. Simulation studies confirm the desirable finite-sample performance of the proposed estimators. Supplementary materials for this article are available online.