Latent Surface Models for Networks Using Aggregated Relational Data
成果类型:
Article
署名作者:
McCormick, Tyler H.; Zheng, Tian
署名单位:
University of Washington; University of Washington Seattle; Columbia University
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2014.991395
发表日期:
2015
页码:
1684-1695
关键词:
mises-fisher distribution
social networks
size
distributions
simulation
inference
people
摘要:
Despite increased interest across a range of scientific applications in modeling and understanding social network structure, collecting complete network data remains logistically and financially challenging, especially in the social sciences. This article introduces a latent surface representation of social network structure for partially observed network data. We derive a multivariate measure of expected (latent) distance between an observed actor and unobserved actors with given features. We also draw novel parallels between our work and dependent data in spatial and ecological statistics. We demonstrate the contribution of our model using a random digit-dial telephone survey and a multiyear prospective study of the relationship between network structure and the spread of infectious disease. The model proposed here is related to previous network models which represents high-dimensional structure through a projection to a low-dimensional latent geometric surface-encoding dependence as distance in the space. We develop a latent surface model for cases when complete network data are unavailable. We focus specifically on aggregated relational data (ARD) which measure network structure indirectly by asking respondents how many connections they have with members of a certain subpopulation (e.g., How many individuals do you know who are HIV positive?) and are easily added to existing surveys. Instead of conditioning on the (latent) distance between twomembers of the network, the latent surface model for ARD conditions on the expected distance between a survey respondent and the center of a subpopulation on a latent manifold surface. A spherical latent surface and angular distance across the sphere's surface facilitate tractable computation of this expectation. This model estimates relative homogeneity between groups in the population and variation in the propensity for interaction between respondents and group members. The model also estimates features of groups which are difficult to reach using standard surveys (e.g., the homeless). Supplementary materials for this article are available online.