Decoupling Shrinkage and Selection in Bayesian Linear Models: A Posterior Summary Perspective
成果类型:
Review
署名作者:
Hahn, P. Richard; Carvalho, Carlos M.
署名单位:
University of Chicago; University of Texas System; University of Texas Austin
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2014.993077
发表日期:
2015
页码:
435-448
关键词:
variable-selection
regression
Lasso
strategies
estimator
mixtures
priors
摘要:
Selecting a subset of variables for linear models remains an active area of research. This article reviews many of the recent contributions to the Bayesian model selection and shrinkage prior literature. A posterior variable selection summary is proposed, which distills a full posterior distribution over regression coefficients into a sequence of sparse linear predictors.