Rerandomization to Balance Tiers of Covariates

成果类型:
Article
署名作者:
Morgan, Kari Lock; Rubin, Donald B.
署名单位:
Pennsylvania Commonwealth System of Higher Education (PCSHE); Pennsylvania State University; Pennsylvania State University - University Park; Harvard University
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2015.1079528
发表日期:
2015
页码:
1412-1421
关键词:
design randomization
摘要:
When conducting a randomized experiment, if an allocation yields treatment groups that differ meaningfully with respect to relevant covariates, groups should be rerandomized. The process involves specifying an explicit criterion for whether an allocation is acceptable, based on a measure of covariate balance, and rerandomizing units until an acceptable allocation is obtained. Here, we illustrate how rerandomization could have improved the design of an already conducted randomized experiment on vocabulary and mathematics training programs, then provide a rerandomization procedure for covariates that vary in importance, and finally offer other extensions for rerandomization, including methods addressing computational efficiency. When covariates vary in a priori importance, better balance should be required for more important covariates. Rerandomization based on Mahalanobis distance preserves the joint distribution of covariates, but balances all covariates equally. Here, we propose rerandomizing based on Mahalanobis distance within tiers of covariate importance. Because balancing covariates in one tier will in general also partially balance covariates in other tiers, for each subsequent tier we explicitly balance only the components orthogonal to covariates in more important tiers.