The Empirical Distribution of a Large Number of Correlated Normal Variables
成果类型:
Article
署名作者:
Azriel, David; Schwartzman, Armin
署名单位:
Technion Israel Institute of Technology; University of Pennsylvania; North Carolina State University
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2014.958156
发表日期:
2015
页码:
1217-1228
关键词:
false discovery rate
z-values
accuracy
摘要:
Motivated by the advent of high-dimensional, highly correlated data, this work studies the limit behavior of the empirical cumulative distribution function (ecdf) of standard normal random variables under arbitrary correlation. First, we provide a necessary and sufficient condition for convergence of the ecdf to the standard normal distribution. Next, under general correlation, we show that the ecdf limit is a random, possible infinite, mixture of normal distribution functions that depends on a number of latent variables and can serve as an asymptotic approximation to the ecdf in high dimensions. We provide conditions under which the dimension of the ecdf limit, defined as the smallest number of effective latent variables, is finite. Estimates of the latent variables are provided and their consistency proved. We demonstrate these methods in a real high-dimensional data example from brain imaging where it is shown that, while the study exhibits apparently strongly significant results, they can be entirely explained by correlation, as captured by the asymptotic approximation developed here. Supplementary materials for this article are available online.