Large-Scale Multiple Testing of Correlations
成果类型:
Article
署名作者:
Cai, T. Tony; Liu, Weidong
署名单位:
University of Pennsylvania; Shanghai Jiao Tong University; Shanghai Jiao Tong University
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2014.999157
发表日期:
2016
页码:
229-240
关键词:
false discovery rate
coexpression
identification
摘要:
Multiple testing of correlations arises in many applications including gene coexpression network analysis and brain connectivity analysis. In this article, we consider large-scale simultaneous testing for correlations in both the one-sample and two-sample settings. New multiple testing procedures are proposed and a bootstrap method is introduced for estimating the proportion of the nulls falsely rejected among all the true nulls. We investigate the properties of the proposed procedures both theoretically and numerically. It is shown that the procedures asymptotically control the overall false discovery rate and false discovery proportion at the nominal level. Simulation results show that the methods perform well numerically in terms of both the size and power of the test and it significantly outperforms two alternative methods. The two-sample procedure is also illustrated by an analysis of a prostate cancer dataset for the detection of changes in coexpression patterns between gene expression levels. Supplementary materials for this article are available online.