I-Optimal Design of Mixture Experiments

成果类型:
Review
署名作者:
Goos, Peter; Jones, Bradley; Syafitri, Utami
署名单位:
KU Leuven
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2015.1136632
发表日期:
2016
页码:
899-911
关键词:
response-surface designs prediction capability CONSTRUCTION simplex models algorithm fraction SPACE
摘要:
In mixture experiments, the factors under study are proportions of the-ingredients-of a mixture. The special nature of the factors necessitates specific types of regression models, and specific types of experimental designs. Although mixture experiments usually are intended to predict the response(s) for all possible formulations of the mixture and to identify optimal proportions for each of the ingredients, little research has been done concerning their I-optimal design. This is surprising given that I-optimal designs minimize the average variance of prediction and, therefore, seem more appropriate for mixture experiments than the commonly used D-optimal designs, which focus on a precise model estimation rather than precise predictions. In this article, we provide the first detailed overview of the literature on the I-optimal design of mixture experiments and identify several contradictions. For the second-order and the special cubic model, we present continuous I-optimal designs and contrast them with the published results. We also study exact I-optimal designs, and compare them in detail to continuous I-optimal designs and to D-optimal designs. One striking result of our work is that the performance of D-optimal designs in terms of the I-optimality criterion very strongly depends on which of the D-optimal designs is considered. Supplemental materials for this article are available online.