Generalized Scalar-on-Image Regression Models via Total Variation

成果类型:
Article
署名作者:
Wang, Xiao; Zhu, Hongtu
署名单位:
Purdue University System; Purdue University; University of North Carolina; University of North Carolina Chapel Hill
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2016.1194846
发表日期:
2017
页码:
1156-1168
关键词:
linear-models Functional regression variable selection REGISTRATION splines disease
摘要:
The use of imaging markers to predict clinical outcomes can have a great impact in public health. The aim of this article is to develop a class of generalized scalar-on-image regression models via total variation (GSIRM-TV), in the sense of generalized linear models, for scalar response and imaging predictor with the presence of scalar covariates. A key novelty of GSIRM-TV is that it is assumed that the slope function (or image) of GSIRM-TV belongs to the space of bounded total variation to explicitly account for the piecewise smooth nature of most imaging data. We develop an efficient penalized total variation optimization to estimate the unknown slope function and other parameters. We also establish nonasymptotic error bounds on the excess risk. These bounds are explicitly specified in terms of sample size, image size, and image smoothness. Our simulations demonstrate a superior performance of GSIRM-TV against many existing approaches. We apply GSIRM-TV to the analysis of hippocampus data obtained from the Alzheimers Disease Neuroimaging Initiative (ADNI) dataset. Supplementary materials for this article are available online.