Multiscale Spatial Density Smoothing: An Application to Large-Scale Radiological Survey and Anomaly Detection

成果类型:
Article
署名作者:
Tansey, Wesley; Athey, Alex; Reinhart, Alex; Scott, James G.
署名单位:
University of Texas System; University of Texas Austin; University of Texas System; University of Texas Austin; Carnegie Mellon University; University of Texas System; University of Texas Austin; University of Texas System; University of Texas Austin
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2016.1276461
发表日期:
2017
页码:
1047-1063
关键词:
polya tree distributions gamma-ray poisson intensity algorithm selection SYSTEM
摘要:
We consider the problem of estimating a spatially varying density function, motivated by problems that arise in large-scale radiological survey and anomaly detection. In this context, the density functions to be estimated are the background gamma-ray energy spectra at sites spread across a large geographical area, such as nuclear production and waste-storage sites, military bases, medical facilities, university campuses, or the downtown of a city. Several challenges combine to make this a difficult problem. First, the spectral density at any given spatial location may have both smooth and nonsmooth features. Second, the spatial correlation in these density functions is neither stationary nor locally isotropic. Finally, at some spatial locations, there are very little data. We present a method called multiscale spatial density smoothing that successfully addresses these challenges. The method is based on recursive dyadic partition of the sample space, and therefore shares much in common with other multiscale methods, such as wavelets and Polya-tree priors. We describe an efficient algorithm for finding a maximum a posteriori (MAP) estimate that leverages recent advances in convex optimization for nonsmooth functions. We apply multiscale spatial density smoothing to real data collected on the background gamma-ray spectra at locations across a large university campus. The method exhibits state-of-the-art performance for spatial smoothing in density estimation, and it leads to substantial improvements in power when used in conjunction with existing methods for detecting the kinds of radiological anomalies that may have important consequences for public health and safety.