Empirical Likelihood for Random Sets
成果类型:
Article
署名作者:
Adusumilli, Karun; Otsu, Taisuke
署名单位:
University of London; London School Economics & Political Science
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2016.1188107
发表日期:
2017
页码:
1064-1075
关键词:
of-fit tests
partial identification
model checks
摘要:
In many statistical applications, the observed data take the form of sets rather than points. Examples include bracket data in survey analysis, tumor growth and rock grain images in morphology analysis, and noisy measurements on the support function of a convex set in medical imaging and robotic vision. Additionally, in studies of treatment effects, researchers often wish to conduct inference on nonparametric bounds for the effects which can be expressed by means of random sets. This article develops the concept of nonparametric likelihood for random sets and its mean, known as the Aumann expectation, and proposes general inference methods by adapting the theory of empirical likelihood. Several examples, such as regression with bracket income data, Boolean models for tumor growth, bound analysis on treatment effects, and image analysis via support functions, illustrate the usefulness of the proposed methods. Supplementary materials for this article are available online.