Fast Approximate Inference for Arbitrarily Large Semiparametric Regression Models via Message Passing

成果类型:
Article
署名作者:
Wand, M. P.
署名单位:
University of Technology Sydney; Queensland University of Technology (QUT)
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2016.1197833
发表日期:
2017
页码:
137-156
关键词:
variational inference prior distributions CURVES binary
摘要:
We show how the notion of message passing can be used to streamline the algebra and computer coding for fast approximate inference in large Bayesian semiparametric regression models. In particular, this approach is amenable to handling arbitrarily large models of particular types once a set of primitive operations is established. The approach is founded upon a message passing formulation of mean field variational Bayes that utilizes factor graph representations of statistical models. The underlying principles apply to general Bayesian hierarchical models although we focus on semiparametric regression. The notion of factor graph fragments is introduced and is shown to facilitate compartmentalization of the required algebra and coding. The resultant algorithms have ready-to-implement closed form expressions and allow a broad class of arbitrarily large semiparametric regression models to be handled. Ongoing software projects such as Infer.NET and Stan support variational-type inference for particular model classes. This article is not concerned with software packages per se and focuses on the underlying tenets of scalable variational inference algorithms. Supplementary materials for this article are available online.