Cluster-Robust Bootstrap Inference in Quantile Regression Models
成果类型:
Article
署名作者:
Hagemann, Andreas
署名单位:
University of Michigan System; University of Michigan
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2016.1148610
发表日期:
2017
页码:
446-456
关键词:
in-differences
摘要:
In this article I develop a wild bootstrap procedure for cluster-robust inference in linear quantile regression models. I show that the bootstrap leads to asymptotically valid inference on the entire quantile regression process in a setting with a large number of small, heterogeneous clusters and provides consistent estimates of the asymptotic covariance function of that process. The proposed bootstrap procedure is easy to implement and performs well even when the number of clusters is much smaller than the sample size. An application to Project STAR data is provided. Supplementary materials for this article are available online.