Joint Estimation of Quantile Planes Over Arbitrary Predictor Spaces
成果类型:
Article
署名作者:
Yang, Yun; Tokdar, Surya T.
署名单位:
Duke University
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2016.1192545
发表日期:
2017
页码:
1107-1120
关键词:
regression
摘要:
In spite of the recent surge of interest in quantile regression, joint estimation of linear quantile planes remains a great challenge in statistics and econometrics. We propose a novel parameterization that characterizes any collection of noncrossing quantile planes over arbitrarily shaped convex predictor domains in any dimension by means of unconstrained scalar, vector and function valued parameters. Statistical models based on this parameterization inherit a fast computation of the likelihood function, enabling penalized likelihood or Bayesian approaches to model fitting. We introduce a complete Bayesian methodology by using Gaussian process prior distributions on the function valued parameters and develop a robust and efficient Markov chain Monte Carlo parameter estimation. The resulting method is shown to offer posterior consistency under mild tail and regularity conditions. We present several illustrative examples where the new method is compared against existing approaches and is found to offer better accuracy, coverage and model fit. Supplementary materials for this article are available online.