Conditions for Ignoring the Missing-Data Mechanism in Likelihood Inferences for Parameter Subsets

成果类型:
Article
署名作者:
Little, Roderick J.; Rubin, Donald B.; Zangeneh, Sahar Z.
署名单位:
University of Michigan System; University of Michigan; Harvard University; Fred Hutchinson Cancer Center
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2015.1136826
发表日期:
2017
页码:
314-320
关键词:
摘要:
For likelihood-based inferences from data with missing values, models are generally needed for both the data and the missing-data mechanism. However, modeling the mechanism can be challenging, and parameters are often poorly identified. Rubin in 1976 showed that for likelihood and Bayesian inference, sufficient conditions for ignoring the missing data mechanism are (a) the missing data are missing at random (MAR), in the sense that missingness does not depend on the missing values after conditioning on the observed data and (b) the parameters of the data model and the missingness mechanism are distinct, that is, there are no a priori ties, via parameter space restrictions or prior distributions, between these two sets of parameters. These conditions are sufficient but not always necessary, and they relate to the full vector of parameters of the data model. We propose definitions of partially MAR and ignorability for a subvector of the parameters of particular substantive interest, for direct likelihood/Bayesian and frequentist likelihood-based inference. We apply these definitions to a variety of examples. We also discuss conditioning on the pattern of missingness, as an alternative strategy for avoiding the need to model the missingness mechanism.