A Massive Data Framework for M-Estimators with Cubic-Rate

成果类型:
Article
署名作者:
Shi, Chengchun; Lu, Wenbin; Song, Rui
署名单位:
North Carolina State University
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2017.1360779
发表日期:
2018
页码:
1698-1709
关键词:
Approximation asymptotics sums
摘要:
The divide and conquer method is a common strategy for handling massive data. In this article, we study the divide and conquer method for cubic-rate estimators under the massive data framework. We develop a general theory for establishing the asymptotic distribution of the aggregated M-estimators using a weighted average with weights depending on the subgroup sample sizes. Under certain condition on the growing rate of the number of subgroups, the resulting aggregated estimators are shown to have faster convergence rate and asymptotic normal distribution, which are more tractable in both computation and inference than the original M-estimators based on pooled data. Our theory applies to a wide class of M-estimators with cube root convergence rate, including the location estimator, maximum score estimator, and value search estimator. Empirical performance via simulations and a real data application also validate our theoretical findings. Supplementary materials for this article are available online.