On Inverse Probability Weighting for Nonmonotone Missing at Random Data
成果类型:
Article
署名作者:
Sun, BaoLuo; Tchetgen, Eric J. Tchetgen
署名单位:
Harvard University; Harvard T.H. Chan School of Public Health; Harvard University; Harvard T.H. Chan School of Public Health
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2016.1256814
发表日期:
2018
页码:
369-379
关键词:
GENERALIZED LINEAR-MODELS
multiple imputation
regression
outcomes
likelihood
responses
摘要:
The development of coherent missing data models to account for nonmonotone missing at random (MAR) data by inverse probability weighting (IPW) remains to date largely unresolved. As a consequence, IPW has essentially been restricted for use only in monotone MAR settings. We propose a class of models for nonmonotone missing data mechanisms that spans the MAR model, while allowing the underlying full data law to remain unrestricted. For parametric specifications within the proposed class, we introduce an unconstrained maximum likelihood estimator for estimating the missing data probabilities which is easily implemented using existing software. To circumvent potential convergence issues with this procedure, we also introduce a constrained Bayesian approach to estimate the missing data process which is guaranteed to yield inferences that respect all model restrictions. The efficiency of standard IPW estimation is improved by incorporating information from incomplete cases through an augmented estimating equation which is optimal within a large class of estimating equations. We investigate the finite-sample properties of the proposed estimators in extensive simulations and illustrate the new methodology in an application evaluating key correlates of preterm delivery for infants born to HIV-infected mothers in Botswana, Africa. Supplementary materials for this article are available online.