Classified Mixed Model Prediction

成果类型:
Article
署名作者:
Jiang, Jiming; Rao, J. Sunil; Fan, Jie; Thuan Nguyen
署名单位:
University of California System; University of California Davis; University of Miami; Oregon Health & Science University
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2016.1246367
发表日期:
2018
页码:
269-279
关键词:
small-area estimation conditional inference trajectories error
摘要:
Many practical problems are related to prediction, where the main interest is at subject (e.g., personalized medicine) or (small) sub-population (e.g., small community) level. In such cases, it is possible to make substantial gains in prediction accuracy by identifying a class that a new subject belongs to. This way, the new subject is potentially associated with a random effect corresponding to the same class in the training data, so that method of mixed model prediction can be used to make the best prediction. We propose a new method, called classified mixed model prediction (CMMP), to achieve this goal. We develop CMMP for both prediction of mixed effects and prediction of future observations, and consider different scenarios where there may or may not be a match of the new subject among the training-data subjects. Theoretical and empirical studies are carried out to study the properties of CMMP, including prediction intervals based on CMMP, and its comparison with existing methods. In particular, we show that, even if the actual match does not exist between the class of the new observations and those of the training data, CMMP still helps in improving prediction accuracy. Two real-data examples are considered. Supplementary materials for this article are available online.
来源URL: