A Permutation Test for the Regression Kink Design
成果类型:
Article
署名作者:
Ganong, Peter; Jaeger, Simon
署名单位:
National Bureau of Economic Research; University of Chicago; Massachusetts Institute of Technology (MIT); University of Bonn; IZA Institute Labor Economics; Leibniz Association; Ifo Institut
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2017.1328356
发表日期:
2018
页码:
494-504
关键词:
randomization inference
unemployment benefits
robust
摘要:
The regression kink (RK) design is an increasingly popular empirical method for estimating causal effects of policies, such as the effect of unemployment benefits on unemployment duration. Using simulation studies based on data from existing RK designs, we empirically document that the statistical significance of RK estimators based on conventional standard errors can be spurious. In the simulations, false positives arise as a consequence of nonlinearities in the underlying relationship between the outcome and the assignment variable, confirming concerns about the misspecification bias of discontinuity estimators pointed out by Calonico, Cattaneo, and Titiunik. As a complement to standard RK inference, we propose that researchers construct a distribution of placebo estimates in regions with and without a policy kink and use this distribution to gauge statistical significance. Under the assumption that the location of the kink point is random, this permutation test has exact size in finite samples for testing a sharp null hypothesis of no effect of the policy on the outcome. We implement simulation studies based on existing RK applications that estimate the effect of unemployment benefits on unemployment duration and show that our permutation test as well as inference procedures proposed by Calonico, Cattaneo, and Titiunik improve upon the size of standard approaches, while having sufficient power to detect an effect of unemployment benefits on unemployment duration.
来源URL: