A Spatio-Temporal Modeling Framework for Surveillance Data of Multiple Infectious Pathogens With Small Laboratory Validation Sets

成果类型:
Article
署名作者:
Tang, Xueying; Yang, Yang; Yu, Hong-Jie; Liao, Qiao-Hong; Bliznyuk, Nikolay
署名单位:
State University System of Florida; University of Florida; State University System of Florida; University of Florida; State University System of Florida; University of Florida; Chinese Center for Disease Control & Prevention; State University System of Florida; University of Florida
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2019.1585250
发表日期:
2019
页码:
1561-1573
关键词:
mouth-disease vaccine efficacy foot hand transmission Identifiability selection CHINA
摘要:
Many surveillance systems of infectious diseases are syndrome-based, capturing patients by clinical manifestation. Only a fraction of patients, mostly severe cases, undergo laboratory validation to identify the underlying pathogen. Motivated by the need to understand transmission dynamics and associate risk factors of enteroviruses causing the hand, foot, and mouth disease (HFMD) in China, we developed a Bayesian spatio-temporal modeling framework for surveillance data of infectious diseases with small validation sets. A novel approach was proposed to sample unobserved pathogen-specific patient counts over space and time and was compared to an existing sampling approach. The practical utility of this framework in identifying key parameters was assessed in simulations for a range of realistic sizes of the validation set. Several designs of sampling patients for laboratory validation were compared with and without aggregation of sparse validation data. The methodology was applied to the 2009 HFMD epidemic in southern China to evaluate transmissibility and the effects of climatic conditions for the leading pathogens of the disease, enterovirus 71, and Coxsackie A16. for this article are available online.