A Generic Sure Independence Screening Procedure

成果类型:
Article
署名作者:
Pan, Wenliang; Wang, Xueqin; Xiao, Weinan; Zhu, Hongtu
署名单位:
Sun Yat Sen University; University of Texas System; UTMD Anderson Cancer Center
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2018.1462709
发表日期:
2019
页码:
928-937
关键词:
regression selection models
摘要:
Extracting important features from ultra-high dimensional data is one of the primary tasks in statistical learning, information theory, precision medicine, and biological discovery. Many of the sure independent screening methods developed to meet these needs are suitable for special models under some assumptions. With the availability of more data types and possible models, a model-free generic screening procedure with fewer and less restrictive assumptions is desirable. In this article, we propose a generic nonparametric sure independence screening procedure, called BCor-SIS, on the basis of a recently developed universal dependence measure: Ball correlation. We show that the proposed procedure has strong screening consistency even when the dimensionality is an exponential order of the sample size without imposing sub-exponential moment assumptions on the data. We investigate the flexibility of this procedure by considering three commonly encountered challenging settings in biological discovery or precision medicine: iterative BCor-SIS, interaction pursuit, and survival outcomes. We use simulation studies and real data analyses to illustrate the versatility and practicability of our BCor-SIS method. Supplementary materials for this article are available online.