BET on Independence
成果类型:
Article
署名作者:
Zhang, Kai
署名单位:
University of North Carolina; University of North Carolina Chapel Hill
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2018.1537921
发表日期:
2019
页码:
1620-1637
关键词:
comprehensive molecular portraits
statistics
suppressor
genes
tests
摘要:
We study the problem of nonparametric dependence detection. Many existing methods may suffer severe power loss due to nonuniform consistency, which we illustrate with a paradox. To avoid such power loss, we approach the nonparametric test of independence through the new framework of binary expansion statistics (BEStat) and binary expansion testing (BET), which examine dependence through a novel binary expansion filtration approximation of the copula. Through a Hadamard transform, we find that the symmetry statistics in the filtration are complete sufficient statistics for dependence. These statistics are also uncorrelated under the null. By using symmetry statistics, the BET avoids the problem of nonuniform consistency and improves upon a wide class of commonly used methods (a) by achieving the minimax rate in sample size requirement for reliable power and (b) by providing clear interpretations of global relationships upon rejection of independence. The binary expansion approach also connects the symmetry statistics with the current computing system to facilitate efficient bitwise implementation. We illustrate the BET with a study of the distribution of stars in the night sky and with an exploratory data analysis of the TCGA breast cancer data. for this article are available online.