A Bayesian Hierarchical Summary Receiver Operating Characteristic Model for Network Meta-Analysis of Diagnostic Tests
成果类型:
Article
署名作者:
Lian, Qinshu; Hodges, James S.; Chu, Haitao
署名单位:
University of Minnesota System; University of Minnesota Twin Cities
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2018.1476239
发表日期:
2019
页码:
949-961
关键词:
conditional dependence
test accuracy
Covariance matrices
gold standard
inconsistency
specificity
unification
sensitivity
article
absence
摘要:
In studies evaluating the accuracy of diagnostic tests, three designs are commonly used, crossover, randomized, and noncomparative. Existing methods for meta-analysis of diagnostic tests mainly consider the simple cases in which the reference test in all or none of the studies can be considered a gold standard test, and in which all studies use either a randomized or noncomparative design. The proliferation of diagnostic instruments and the diversity of study designs create a need for more general methods to combine studies that include or do not include a gold standard test and that use various designs. This article extends the Bayesian hierarchical summary receiver operating characteristic model to network meta-analysis of diagnostic tests to simultaneously compare multiple tests within a missing data framework. The method accounts for correlations between multiple tests and for heterogeneity between studies. It also allows different studies to include different subsets of diagnostic tests and provides flexibility in the choice of summary statistics. The model is evaluated using simulations and illustrated using real data on tests for deep vein thrombosis, with sensitivity analyses. Supplementary materials for this article are available online.