Optimal Sparse Singular Value Decomposition for High-Dimensional High-Order Data

成果类型:
Article
署名作者:
Zhang, Anru; Han, Rungang
署名单位:
University of Wisconsin System; University of Wisconsin Madison
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2018.1527227
发表日期:
2019
页码:
1708-1725
关键词:
tensor decompositions rank approximation PCA
摘要:
In this article, we consider the sparse tensor singular value decomposition, which aims for dimension reduction on high-dimensional high-order data with certain sparsity structure. A method named sparse tensor alternating thresholding for singular value decomposition (STAT-SVD) is proposed. The proposed procedure features a novel double projection & thresholding scheme, which provides a sharp criterion for thresholding in each iteration. Compared with regular tensor SVD model, STAT-SVD permits more robust estimation under weaker assumptions. Both the upper and lower bounds for estimation accuracy are developed. The proposed procedure is shown to be minimax rate-optimal in a general class of situations. Simulation studies show that STAT-SVD performs well under a variety of configurations. We also illustrate the merits of the proposed procedure on a longitudinal tensor dataset on European country mortality rates. for this article are available online.